Extraction & Chunking Strategies API
This documentation covers the API reference for extraction and chunking strategies in Crawl4AI.
Extraction Strategies
All extraction strategies inherit from the base ExtractionStrategy
class and implement two key methods:
- extract(url: str, html: str) -> List[Dict[str, Any]]
- run(url: str, sections: List[str]) -> List[Dict[str, Any]]
LLMExtractionStrategy
Used for extracting structured data using Language Models.
LLMExtractionStrategy(
# Required Parameters
provider: str = DEFAULT_PROVIDER, # LLM provider (e.g., "ollama/llama2")
api_token: Optional[str] = None, # API token
# Extraction Configuration
instruction: str = None, # Custom extraction instruction
schema: Dict = None, # Pydantic model schema for structured data
extraction_type: str = "block", # "block" or "schema"
# Chunking Parameters
chunk_token_threshold: int = 4000, # Maximum tokens per chunk
overlap_rate: float = 0.1, # Overlap between chunks
word_token_rate: float = 0.75, # Word to token conversion rate
apply_chunking: bool = True, # Enable/disable chunking
# API Configuration
base_url: str = None, # Base URL for API
extra_args: Dict = {}, # Additional provider arguments
verbose: bool = False # Enable verbose logging
)
CosineStrategy
Used for content similarity-based extraction and clustering.
CosineStrategy(
# Content Filtering
semantic_filter: str = None, # Topic/keyword filter
word_count_threshold: int = 10, # Minimum words per cluster
sim_threshold: float = 0.3, # Similarity threshold
# Clustering Parameters
max_dist: float = 0.2, # Maximum cluster distance
linkage_method: str = 'ward', # Clustering method
top_k: int = 3, # Top clusters to return
# Model Configuration
model_name: str = 'sentence-transformers/all-MiniLM-L6-v2', # Embedding model
verbose: bool = False # Enable verbose logging
)
JsonCssExtractionStrategy
Used for CSS selector-based structured data extraction.
JsonCssExtractionStrategy(
schema: Dict[str, Any], # Extraction schema
verbose: bool = False # Enable verbose logging
)
# Schema Structure
schema = {
"name": str, # Schema name
"baseSelector": str, # Base CSS selector
"fields": [ # List of fields to extract
{
"name": str, # Field name
"selector": str, # CSS selector
"type": str, # Field type: "text", "attribute", "html", "regex"
"attribute": str, # For type="attribute"
"pattern": str, # For type="regex"
"transform": str, # Optional: "lowercase", "uppercase", "strip"
"default": Any # Default value if extraction fails
}
]
}
Chunking Strategies
All chunking strategies inherit from ChunkingStrategy
and implement the chunk(text: str) -> list
method.
RegexChunking
Splits text based on regex patterns.
SlidingWindowChunking
Creates overlapping chunks with a sliding window approach.
SlidingWindowChunking(
window_size: int = 100, # Window size in words
step: int = 50 # Step size between windows
)
OverlappingWindowChunking
Creates chunks with specified overlap.
OverlappingWindowChunking(
window_size: int = 1000, # Chunk size in words
overlap: int = 100 # Overlap size in words
)
Usage Examples
LLM Extraction
from pydantic import BaseModel
from crawl4ai.extraction_strategy import LLMExtractionStrategy
# Define schema
class Article(BaseModel):
title: str
content: str
author: str
# Create strategy
strategy = LLMExtractionStrategy(
provider="ollama/llama2",
schema=Article.schema(),
instruction="Extract article details"
)
# Use with crawler
result = await crawler.arun(
url="https://example.com/article",
extraction_strategy=strategy
)
# Access extracted data
data = json.loads(result.extracted_content)
CSS Extraction
from crawl4ai.extraction_strategy import JsonCssExtractionStrategy
# Define schema
schema = {
"name": "Product List",
"baseSelector": ".product-card",
"fields": [
{
"name": "title",
"selector": "h2.title",
"type": "text"
},
{
"name": "price",
"selector": ".price",
"type": "text",
"transform": "strip"
},
{
"name": "image",
"selector": "img",
"type": "attribute",
"attribute": "src"
}
]
}
# Create and use strategy
strategy = JsonCssExtractionStrategy(schema)
result = await crawler.arun(
url="https://example.com/products",
extraction_strategy=strategy
)
Content Chunking
from crawl4ai.chunking_strategy import OverlappingWindowChunking
# Create chunking strategy
chunker = OverlappingWindowChunking(
window_size=500, # 500 words per chunk
overlap=50 # 50 words overlap
)
# Use with extraction strategy
strategy = LLMExtractionStrategy(
provider="ollama/llama2",
chunking_strategy=chunker
)
result = await crawler.arun(
url="https://example.com/long-article",
extraction_strategy=strategy
)
Best Practices
1. Choose the Right Strategy
- Use LLMExtractionStrategy
for complex, unstructured content
- Use JsonCssExtractionStrategy
for well-structured HTML
- Use CosineStrategy
for content similarity and clustering
2. Optimize Chunking
# For long documents
strategy = LLMExtractionStrategy(
chunk_token_threshold=2000, # Smaller chunks
overlap_rate=0.1 # 10% overlap
)
3. Handle Errors
try:
result = await crawler.arun(
url="https://example.com",
extraction_strategy=strategy
)
if result.success:
content = json.loads(result.extracted_content)
except Exception as e:
print(f"Extraction failed: {e}")
4. Monitor Performance