Extraction & Chunking Strategies API

This documentation covers the API reference for extraction and chunking strategies in Crawl4AI.

Extraction Strategies

All extraction strategies inherit from the base ExtractionStrategy class and implement two key methods: - extract(url: str, html: str) -> List[Dict[str, Any]] - run(url: str, sections: List[str]) -> List[Dict[str, Any]]

LLMExtractionStrategy

Used for extracting structured data using Language Models.

LLMExtractionStrategy(
    # Required Parameters
    provider: str = DEFAULT_PROVIDER,     # LLM provider (e.g., "ollama/llama2")
    api_token: Optional[str] = None,      # API token

    # Extraction Configuration
    instruction: str = None,              # Custom extraction instruction
    schema: Dict = None,                  # Pydantic model schema for structured data
    extraction_type: str = "block",       # "block" or "schema"

    # Chunking Parameters
    chunk_token_threshold: int = 4000,    # Maximum tokens per chunk
    overlap_rate: float = 0.1,           # Overlap between chunks
    word_token_rate: float = 0.75,       # Word to token conversion rate
    apply_chunking: bool = True,         # Enable/disable chunking

    # API Configuration
    base_url: str = None,                # Base URL for API
    extra_args: Dict = {},               # Additional provider arguments
    verbose: bool = False                # Enable verbose logging
)

CosineStrategy

Used for content similarity-based extraction and clustering.

CosineStrategy(
    # Content Filtering
    semantic_filter: str = None,        # Topic/keyword filter
    word_count_threshold: int = 10,     # Minimum words per cluster
    sim_threshold: float = 0.3,         # Similarity threshold

    # Clustering Parameters
    max_dist: float = 0.2,             # Maximum cluster distance
    linkage_method: str = 'ward',       # Clustering method
    top_k: int = 3,                    # Top clusters to return

    # Model Configuration
    model_name: str = 'sentence-transformers/all-MiniLM-L6-v2',  # Embedding model

    verbose: bool = False              # Enable verbose logging
)

JsonCssExtractionStrategy

Used for CSS selector-based structured data extraction.

JsonCssExtractionStrategy(
    schema: Dict[str, Any],    # Extraction schema
    verbose: bool = False      # Enable verbose logging
)

# Schema Structure
schema = {
    "name": str,              # Schema name
    "baseSelector": str,      # Base CSS selector
    "fields": [               # List of fields to extract
        {
            "name": str,      # Field name
            "selector": str,  # CSS selector
            "type": str,     # Field type: "text", "attribute", "html", "regex"
            "attribute": str, # For type="attribute"
            "pattern": str,  # For type="regex"
            "transform": str, # Optional: "lowercase", "uppercase", "strip"
            "default": Any    # Default value if extraction fails
        }
    ]
}

Chunking Strategies

All chunking strategies inherit from ChunkingStrategy and implement the chunk(text: str) -> list method.

RegexChunking

Splits text based on regex patterns.

RegexChunking(
    patterns: List[str] = None  # Regex patterns for splitting
                               # Default: [r'\n\n']
)

SlidingWindowChunking

Creates overlapping chunks with a sliding window approach.

SlidingWindowChunking(
    window_size: int = 100,    # Window size in words
    step: int = 50             # Step size between windows
)

OverlappingWindowChunking

Creates chunks with specified overlap.

OverlappingWindowChunking(
    window_size: int = 1000,   # Chunk size in words
    overlap: int = 100         # Overlap size in words
)

Usage Examples

LLM Extraction

from pydantic import BaseModel
from crawl4ai.extraction_strategy import LLMExtractionStrategy

# Define schema
class Article(BaseModel):
    title: str
    content: str
    author: str

# Create strategy
strategy = LLMExtractionStrategy(
    provider="ollama/llama2",
    schema=Article.schema(),
    instruction="Extract article details"
)

# Use with crawler
result = await crawler.arun(
    url="https://example.com/article",
    extraction_strategy=strategy
)

# Access extracted data
data = json.loads(result.extracted_content)

CSS Extraction

from crawl4ai.extraction_strategy import JsonCssExtractionStrategy

# Define schema
schema = {
    "name": "Product List",
    "baseSelector": ".product-card",
    "fields": [
        {
            "name": "title",
            "selector": "h2.title",
            "type": "text"
        },
        {
            "name": "price",
            "selector": ".price",
            "type": "text",
            "transform": "strip"
        },
        {
            "name": "image",
            "selector": "img",
            "type": "attribute",
            "attribute": "src"
        }
    ]
}

# Create and use strategy
strategy = JsonCssExtractionStrategy(schema)
result = await crawler.arun(
    url="https://example.com/products",
    extraction_strategy=strategy
)

Content Chunking

from crawl4ai.chunking_strategy import OverlappingWindowChunking

# Create chunking strategy
chunker = OverlappingWindowChunking(
    window_size=500,  # 500 words per chunk
    overlap=50        # 50 words overlap
)

# Use with extraction strategy
strategy = LLMExtractionStrategy(
    provider="ollama/llama2",
    chunking_strategy=chunker
)

result = await crawler.arun(
    url="https://example.com/long-article",
    extraction_strategy=strategy
)

Best Practices

1. Choose the Right Strategy - Use LLMExtractionStrategy for complex, unstructured content - Use JsonCssExtractionStrategy for well-structured HTML - Use CosineStrategy for content similarity and clustering

2. Optimize Chunking

# For long documents
strategy = LLMExtractionStrategy(
    chunk_token_threshold=2000,  # Smaller chunks
    overlap_rate=0.1           # 10% overlap
)

3. Handle Errors

try:
    result = await crawler.arun(
        url="https://example.com",
        extraction_strategy=strategy
    )
    if result.success:
        content = json.loads(result.extracted_content)
except Exception as e:
    print(f"Extraction failed: {e}")

4. Monitor Performance

strategy = CosineStrategy(
    verbose=True,  # Enable logging
    word_count_threshold=20,  # Filter short content
    top_k=5  # Limit results
)