Docker Deployment

Crawl4AI provides official Docker images for easy deployment and scalability. This guide covers installation, configuration, and usage of Crawl4AI in Docker environments.

Quick Start ๐Ÿš€

Pull and run the basic version:

docker pull unclecode/crawl4ai:basic
docker run -p 11235:11235 unclecode/crawl4ai:basic

Test the deployment:

import requests

# Test health endpoint
health = requests.get("http://localhost:11235/health")
print("Health check:", health.json())

# Test basic crawl
response = requests.post(
    "http://localhost:11235/crawl",
    json={
        "urls": "https://www.nbcnews.com/business",
        "priority": 10
    }
)
task_id = response.json()["task_id"]
print("Task ID:", task_id)

Available Images ๐Ÿท๏ธ

  • unclecode/crawl4ai:basic - Basic web crawling capabilities
  • unclecode/crawl4ai:all - Full installation with all features
  • unclecode/crawl4ai:gpu - GPU-enabled version for ML features

Configuration Options ๐Ÿ”ง

Environment Variables

docker run -p 11235:11235 \
    -e MAX_CONCURRENT_TASKS=5 \
    -e OPENAI_API_KEY=your_key \
    unclecode/crawl4ai:all

Volume Mounting

Mount a directory for persistent data:

docker run -p 11235:11235 \
    -v $(pwd)/data:/app/data \
    unclecode/crawl4ai:all

Resource Limits

Control container resources:

docker run -p 11235:11235 \
    --memory=4g \
    --cpus=2 \
    unclecode/crawl4ai:all

Usage Examples ๐Ÿ“

Basic Crawling

request = {
    "urls": "https://www.nbcnews.com/business",
    "priority": 10
}

response = requests.post("http://localhost:11235/crawl", json=request)
task_id = response.json()["task_id"]

# Get results
result = requests.get(f"http://localhost:11235/task/{task_id}")

Structured Data Extraction

schema = {
    "name": "Crypto Prices",
    "baseSelector": ".cds-tableRow-t45thuk",
    "fields": [
        {
            "name": "crypto",
            "selector": "td:nth-child(1) h2",
            "type": "text",
        },
        {
            "name": "price",
            "selector": "td:nth-child(2)",
            "type": "text",
        }
    ],
}

request = {
    "urls": "https://www.coinbase.com/explore",
    "extraction_config": {
        "type": "json_css",
        "params": {"schema": schema}
    }
}

Dynamic Content Handling

request = {
    "urls": "https://www.nbcnews.com/business",
    "js_code": [
        "const loadMoreButton = Array.from(document.querySelectorAll('button')).find(button => button.textContent.includes('Load More')); loadMoreButton && loadMoreButton.click();"
    ],
    "wait_for": "article.tease-card:nth-child(10)"
}

AI-Powered Extraction (Full Version)

request = {
    "urls": "https://www.nbcnews.com/business",
    "extraction_config": {
        "type": "cosine",
        "params": {
            "semantic_filter": "business finance economy",
            "word_count_threshold": 10,
            "max_dist": 0.2,
            "top_k": 3
        }
    }
}

Platform-Specific Instructions ๐Ÿ’ป

macOS

docker pull unclecode/crawl4ai:basic
docker run -p 11235:11235 unclecode/crawl4ai:basic

Ubuntu

# Basic version
docker pull unclecode/crawl4ai:basic
docker run -p 11235:11235 unclecode/crawl4ai:basic

# With GPU support
docker pull unclecode/crawl4ai:gpu
docker run --gpus all -p 11235:11235 unclecode/crawl4ai:gpu

Windows (PowerShell)

docker pull unclecode/crawl4ai:basic
docker run -p 11235:11235 unclecode/crawl4ai:basic

Testing ๐Ÿงช

Save this as test_docker.py:

import requests
import json
import time
import sys

class Crawl4AiTester:
    def __init__(self, base_url: str = "http://localhost:11235"):
        self.base_url = base_url

    def submit_and_wait(self, request_data: dict, timeout: int = 300) -> dict:
        # Submit crawl job
        response = requests.post(f"{self.base_url}/crawl", json=request_data)
        task_id = response.json()["task_id"]
        print(f"Task ID: {task_id}")

        # Poll for result
        start_time = time.time()
        while True:
            if time.time() - start_time > timeout:
                raise TimeoutError(f"Task {task_id} timeout")

            result = requests.get(f"{self.base_url}/task/{task_id}")
            status = result.json()

            if status["status"] == "completed":
                return status

            time.sleep(2)

def test_deployment():
    tester = Crawl4AiTester()

    # Test basic crawl
    request = {
        "urls": "https://www.nbcnews.com/business",
        "priority": 10
    }

    result = tester.submit_and_wait(request)
    print("Basic crawl successful!")
    print(f"Content length: {len(result['result']['markdown'])}")

if __name__ == "__main__":
    test_deployment()

Advanced Configuration โš™๏ธ

Crawler Parameters

The crawler_params field allows you to configure the browser instance and crawling behavior. Here are key parameters you can use:

request = {
    "urls": "https://example.com",
    "crawler_params": {
        # Browser Configuration
        "headless": True,                    # Run in headless mode
        "browser_type": "chromium",          # chromium/firefox/webkit
        "user_agent": "custom-agent",        # Custom user agent
        "proxy": "http://proxy:8080",        # Proxy configuration

        # Performance & Behavior
        "page_timeout": 30000,               # Page load timeout (ms)
        "verbose": True,                     # Enable detailed logging
        "semaphore_count": 5,               # Concurrent request limit

        # Anti-Detection Features
        "simulate_user": True,               # Simulate human behavior
        "magic": True,                       # Advanced anti-detection
        "override_navigator": True,          # Override navigator properties

        # Session Management
        "user_data_dir": "./browser-data",   # Browser profile location
        "use_managed_browser": True,         # Use persistent browser
    }
}

Extra Parameters

The extra field allows passing additional parameters directly to the crawler's arun function:

request = {
    "urls": "https://example.com",
    "extra": {
        "word_count_threshold": 10,          # Min words per block
        "only_text": True,                   # Extract only text
        "bypass_cache": True,                # Force fresh crawl
        "process_iframes": True,             # Include iframe content
    }
}

Complete Examples

  1. Advanced News Crawling

    request = {
        "urls": "https://www.nbcnews.com/business",
        "crawler_params": {
            "headless": True,
            "page_timeout": 30000,
            "remove_overlay_elements": True      # Remove popups
        },
        "extra": {
            "word_count_threshold": 50,          # Longer content blocks
            "bypass_cache": True                 # Fresh content
        },
        "css_selector": ".article-body"
    }
    

  2. Anti-Detection Configuration

    request = {
        "urls": "https://example.com",
        "crawler_params": {
            "simulate_user": True,
            "magic": True,
            "override_navigator": True,
            "user_agent": "Mozilla/5.0 ...",
            "headers": {
                "Accept-Language": "en-US,en;q=0.9"
            }
        }
    }
    

  3. LLM Extraction with Custom Parameters

    request = {
        "urls": "https://openai.com/pricing",
        "extraction_config": {
            "type": "llm",
            "params": {
                "provider": "openai/gpt-4",
                "schema": pricing_schema
            }
        },
        "crawler_params": {
            "verbose": True,
            "page_timeout": 60000
        },
        "extra": {
            "word_count_threshold": 1,
            "only_text": True
        }
    }
    

  4. Session-Based Dynamic Content

    request = {
        "urls": "https://example.com",
        "crawler_params": {
            "session_id": "dynamic_session",
            "headless": False,
            "page_timeout": 60000
        },
        "js_code": ["window.scrollTo(0, document.body.scrollHeight);"],
        "wait_for": "js:() => document.querySelectorAll('.item').length > 10",
        "extra": {
            "delay_before_return_html": 2.0
        }
    }
    

  5. Screenshot with Custom Timing

    request = {
        "urls": "https://example.com",
        "screenshot": True,
        "crawler_params": {
            "headless": True,
            "screenshot_wait_for": ".main-content"
        },
        "extra": {
            "delay_before_return_html": 3.0
        }
    }
    

Parameter Reference Table

Category Parameter Type Description
Browser headless bool Run browser in headless mode
Browser browser_type str Browser engine selection
Browser user_agent str Custom user agent string
Network proxy str Proxy server URL
Network headers dict Custom HTTP headers
Timing page_timeout int Page load timeout (ms)
Timing delay_before_return_html float Wait before capture
Anti-Detection simulate_user bool Human behavior simulation
Anti-Detection magic bool Advanced protection
Session session_id str Browser session ID
Session user_data_dir str Profile directory
Content word_count_threshold int Minimum words per block
Content only_text bool Text-only extraction
Content process_iframes bool Include iframe content
Debug verbose bool Detailed logging
Debug log_console bool Browser console logs

Troubleshooting ๐Ÿ”

Common Issues

  1. Connection Refused

    Error: Connection refused at localhost:11235
    
    Solution: Ensure the container is running and ports are properly mapped.

  2. Resource Limits

    Error: No available slots
    
    Solution: Increase MAX_CONCURRENT_TASKS or container resources.

  3. GPU Access

    Error: GPU not found
    
    Solution: Ensure proper NVIDIA drivers and use --gpus all flag.

Debug Mode

Access container for debugging:

docker run -it --entrypoint /bin/bash unclecode/crawl4ai:all

View container logs:

docker logs [container_id]

Best Practices ๐ŸŒŸ

  1. Resource Management
  2. Set appropriate memory and CPU limits
  3. Monitor resource usage via health endpoint
  4. Use basic version for simple crawling tasks

  5. Scaling

  6. Use multiple containers for high load
  7. Implement proper load balancing
  8. Monitor performance metrics

  9. Security

  10. Use environment variables for sensitive data
  11. Implement proper network isolation
  12. Regular security updates

API Reference ๐Ÿ“š

Health Check

GET /health

Submit Crawl Task

POST /crawl
Content-Type: application/json

{
    "urls": "string or array",
    "extraction_config": {
        "type": "basic|llm|cosine|json_css",
        "params": {}
    },
    "priority": 1-10,
    "ttl": 3600
}

Get Task Status

GET /task/{task_id}

For more details, visit the official documentation.