Docker Deployment
Crawl4AI provides official Docker images for easy deployment and scalability. This guide covers installation, configuration, and usage of Crawl4AI in Docker environments.
Quick Start π
Pull and run the basic version:
# Basic run without security
docker pull unclecode/crawl4ai:basic
docker run -p 11235:11235 unclecode/crawl4ai:basic
# Run with API security enabled
docker run -p 11235:11235 -e CRAWL4AI_API_TOKEN=your_secret_token unclecode/crawl4ai:basic
Running with Docker Compose π³
Use Docker Compose (From Local Dockerfile or Docker Hub)
Crawl4AI provides flexibility to use Docker Compose for managing your containerized services. You can either build the image locally from the provided Dockerfile
or use the pre-built image from Docker Hub.
Option 1: Using Docker Compose to Build Locally
If you want to build the image locally, use the provided docker-compose.local.yml
file.
This will:
1. Build the Docker image from the provided Dockerfile
.
2. Start the container and expose it on http://localhost:11235
.
Option 2: Using Docker Compose with Pre-Built Image from Hub
If you prefer using the pre-built image on Docker Hub, use the docker-compose.hub.yml
file.
This will:
1. Pull the pre-built image unclecode/crawl4ai:basic
(or all
, depending on your configuration).
2. Start the container and expose it on http://localhost:11235
.
Stopping the Running Services
To stop the services started via Docker Compose, you can use:
If the containers donβt stop and the application is still running, check the running containers:
Find the CONTAINER ID
of the running service and stop it forcefully:
Debugging with Docker Compose
-
Check Logs: To view the container logs:
-
Remove Orphaned Containers: If the service is still running unexpectedly:
-
Manually Remove Network: If the network is still in use:
Why Use Docker Compose?
Docker Compose is the recommended way to deploy Crawl4AI because: 1. It simplifies multi-container setups. 2. Allows you to define environment variables, resources, and ports in a single file. 3. Makes it easier to switch between local development and production-ready images.
For example, your docker-compose.yml
could include API keys, token settings, and memory limits, making deployment quick and consistent.
API Security π
Understanding CRAWL4AI_API_TOKEN
The CRAWL4AI_API_TOKEN
provides optional security for your Crawl4AI instance:
- If
CRAWL4AI_API_TOKEN
is set: All API endpoints (except/health
) require authentication - If
CRAWL4AI_API_TOKEN
is not set: The API is publicly accessible
# Secured Instance
docker run -p 11235:11235 -e CRAWL4AI_API_TOKEN=your_secret_token unclecode/crawl4ai:all
# Unsecured Instance
docker run -p 11235:11235 unclecode/crawl4ai:all
Making API Calls
For secured instances, include the token in all requests:
import requests
# Setup headers if token is being used
api_token = "your_secret_token" # Same token set in CRAWL4AI_API_TOKEN
headers = {"Authorization": f"Bearer {api_token}"} if api_token else {}
# Making authenticated requests
response = requests.post(
"http://localhost:11235/crawl",
headers=headers,
json={
"urls": "https://example.com",
"priority": 10
}
)
# Checking task status
task_id = response.json()["task_id"]
status = requests.get(
f"http://localhost:11235/task/{task_id}",
headers=headers
)
Using with Docker Compose
In your docker-compose.yml
:
services:
crawl4ai:
image: unclecode/crawl4ai:all
environment:
- CRAWL4AI_API_TOKEN=${CRAWL4AI_API_TOKEN:-} # Optional
# ... other configuration
Then either:
1. Set in .env
file:
- Or set via command line:
Security Note: If you enable the API token, make sure to keep it secure and never commit it to version control. The token will be required for all API endpoints except the health check endpoint (
/health
).
Configuration Options π§
Environment Variables
You can configure the service using environment variables:
# Basic configuration
docker run -p 11235:11235 \
-e MAX_CONCURRENT_TASKS=5 \
unclecode/crawl4ai:all
# With security and LLM support
docker run -p 11235:11235 \
-e CRAWL4AI_API_TOKEN=your_secret_token \
-e OPENAI_API_KEY=sk-... \
-e ANTHROPIC_API_KEY=sk-ant-... \
unclecode/crawl4ai:all
Using Docker Compose (Recommended) π³
Create a docker-compose.yml
:
version: '3.8'
services:
crawl4ai:
image: unclecode/crawl4ai:all
ports:
- "11235:11235"
environment:
- CRAWL4AI_API_TOKEN=${CRAWL4AI_API_TOKEN:-} # Optional API security
- MAX_CONCURRENT_TASKS=5
# LLM Provider Keys
- OPENAI_API_KEY=${OPENAI_API_KEY:-}
- ANTHROPIC_API_KEY=${ANTHROPIC_API_KEY:-}
volumes:
- /dev/shm:/dev/shm
deploy:
resources:
limits:
memory: 4G
reservations:
memory: 1G
You can run it in two ways:
-
Using environment variables directly:
-
Using a
.env
file (recommended): Create a.env
file in the same directory:
Then simply run:
Testing the Deployment π§ͺ
import requests
# For unsecured instances
def test_unsecured():
# Health check
health = requests.get("http://localhost:11235/health")
print("Health check:", health.json())
# Basic crawl
response = requests.post(
"http://localhost:11235/crawl",
json={
"urls": "https://www.nbcnews.com/business",
"priority": 10
}
)
task_id = response.json()["task_id"]
print("Task ID:", task_id)
# For secured instances
def test_secured(api_token):
headers = {"Authorization": f"Bearer {api_token}"}
# Basic crawl with authentication
response = requests.post(
"http://localhost:11235/crawl",
headers=headers,
json={
"urls": "https://www.nbcnews.com/business",
"priority": 10
}
)
task_id = response.json()["task_id"]
print("Task ID:", task_id)
LLM Extraction Example π€
When you've configured your LLM provider keys (via environment variables or .env
), you can use LLM extraction:
request = {
"urls": "https://example.com",
"extraction_config": {
"type": "llm",
"params": {
"provider": "openai/gpt-4",
"instruction": "Extract main topics from the page"
}
}
}
# Make the request (add headers if using API security)
response = requests.post("http://localhost:11235/crawl", json=request)
Note: Remember to add
.env
to your.gitignore
to keep your API keys secure!
Usage Examples π
Basic Crawling
request = {
"urls": "https://www.nbcnews.com/business",
"priority": 10
}
response = requests.post("http://localhost:11235/crawl", json=request)
task_id = response.json()["task_id"]
# Get results
result = requests.get(f"http://localhost:11235/task/{task_id}")
Structured Data Extraction
schema = {
"name": "Crypto Prices",
"baseSelector": ".cds-tableRow-t45thuk",
"fields": [
{
"name": "crypto",
"selector": "td:nth-child(1) h2",
"type": "text",
},
{
"name": "price",
"selector": "td:nth-child(2)",
"type": "text",
}
],
}
request = {
"urls": "https://www.coinbase.com/explore",
"extraction_config": {
"type": "json_css",
"params": {"schema": schema}
}
}
Dynamic Content Handling
request = {
"urls": "https://www.nbcnews.com/business",
"js_code": [
"const loadMoreButton = Array.from(document.querySelectorAll('button')).find(button => button.textContent.includes('Load More')); loadMoreButton && loadMoreButton.click();"
],
"wait_for": "article.tease-card:nth-child(10)"
}
AI-Powered Extraction (Full Version)
request = {
"urls": "https://www.nbcnews.com/business",
"extraction_config": {
"type": "cosine",
"params": {
"semantic_filter": "business finance economy",
"word_count_threshold": 10,
"max_dist": 0.2,
"top_k": 3
}
}
}
Platform-Specific Instructions π»
macOS
Ubuntu
# Basic version
docker pull unclecode/crawl4ai:basic
docker run -p 11235:11235 unclecode/crawl4ai:basic
# With GPU support
docker pull unclecode/crawl4ai:gpu
docker run --gpus all -p 11235:11235 unclecode/crawl4ai:gpu
Windows (PowerShell)
Testing π§ͺ
Save this as test_docker.py
:
import requests
import json
import time
import sys
class Crawl4AiTester:
def __init__(self, base_url: str = "http://localhost:11235"):
self.base_url = base_url
def submit_and_wait(self, request_data: dict, timeout: int = 300) -> dict:
# Submit crawl job
response = requests.post(f"{self.base_url}/crawl", json=request_data)
task_id = response.json()["task_id"]
print(f"Task ID: {task_id}")
# Poll for result
start_time = time.time()
while True:
if time.time() - start_time > timeout:
raise TimeoutError(f"Task {task_id} timeout")
result = requests.get(f"{self.base_url}/task/{task_id}")
status = result.json()
if status["status"] == "completed":
return status
time.sleep(2)
def test_deployment():
tester = Crawl4AiTester()
# Test basic crawl
request = {
"urls": "https://www.nbcnews.com/business",
"priority": 10
}
result = tester.submit_and_wait(request)
print("Basic crawl successful!")
print(f"Content length: {len(result['result']['markdown'])}")
if __name__ == "__main__":
test_deployment()
Advanced Configuration βοΈ
Crawler Parameters
The crawler_params
field allows you to configure the browser instance and crawling behavior. Here are key parameters you can use:
request = {
"urls": "https://example.com",
"crawler_params": {
# Browser Configuration
"headless": True, # Run in headless mode
"browser_type": "chromium", # chromium/firefox/webkit
"user_agent": "custom-agent", # Custom user agent
"proxy": "http://proxy:8080", # Proxy configuration
# Performance & Behavior
"page_timeout": 30000, # Page load timeout (ms)
"verbose": True, # Enable detailed logging
"semaphore_count": 5, # Concurrent request limit
# Anti-Detection Features
"simulate_user": True, # Simulate human behavior
"magic": True, # Advanced anti-detection
"override_navigator": True, # Override navigator properties
# Session Management
"user_data_dir": "./browser-data", # Browser profile location
"use_managed_browser": True, # Use persistent browser
}
}
Extra Parameters
The extra
field allows passing additional parameters directly to the crawler's arun
function:
request = {
"urls": "https://example.com",
"extra": {
"word_count_threshold": 10, # Min words per block
"only_text": True, # Extract only text
"bypass_cache": True, # Force fresh crawl
"process_iframes": True, # Include iframe content
}
}
Complete Examples
1.βAdvanced News Crawling
request = {
"urls": "https://www.nbcnews.com/business",
"crawler_params": {
"headless": True,
"page_timeout": 30000,
"remove_overlay_elements": True # Remove popups
},
"extra": {
"word_count_threshold": 50, # Longer content blocks
"bypass_cache": True # Fresh content
},
"css_selector": ".article-body"
}
2.βAnti-Detection Configuration
request = {
"urls": "https://example.com",
"crawler_params": {
"simulate_user": True,
"magic": True,
"override_navigator": True,
"user_agent": "Mozilla/5.0 ...",
"headers": {
"Accept-Language": "en-US,en;q=0.9"
}
}
}
3.βLLM Extraction with Custom Parameters
request = {
"urls": "https://openai.com/pricing",
"extraction_config": {
"type": "llm",
"params": {
"provider": "openai/gpt-4",
"schema": pricing_schema
}
},
"crawler_params": {
"verbose": True,
"page_timeout": 60000
},
"extra": {
"word_count_threshold": 1,
"only_text": True
}
}
4.βSession-Based Dynamic Content
request = {
"urls": "https://example.com",
"crawler_params": {
"session_id": "dynamic_session",
"headless": False,
"page_timeout": 60000
},
"js_code": ["window.scrollTo(0, document.body.scrollHeight);"],
"wait_for": "js:() => document.querySelectorAll('.item').length > 10",
"extra": {
"delay_before_return_html": 2.0
}
}
5.βScreenshot with Custom Timing
request = {
"urls": "https://example.com",
"screenshot": True,
"crawler_params": {
"headless": True,
"screenshot_wait_for": ".main-content"
},
"extra": {
"delay_before_return_html": 3.0
}
}
Parameter Reference Table
Category | Parameter | Type | Description |
---|---|---|---|
Browser | headless | bool | Run browser in headless mode |
Browser | browser_type | str | Browser engine selection |
Browser | user_agent | str | Custom user agent string |
Network | proxy | str | Proxy server URL |
Network | headers | dict | Custom HTTP headers |
Timing | page_timeout | int | Page load timeout (ms) |
Timing | delay_before_return_html | float | Wait before capture |
Anti-Detection | simulate_user | bool | Human behavior simulation |
Anti-Detection | magic | bool | Advanced protection |
Session | session_id | str | Browser session ID |
Session | user_data_dir | str | Profile directory |
Content | word_count_threshold | int | Minimum words per block |
Content | only_text | bool | Text-only extraction |
Content | process_iframes | bool | Include iframe content |
Debug | verbose | bool | Detailed logging |
Debug | log_console | bool | Browser console logs |
Troubleshooting π
Common Issues
1.βConnection Refused
Solution: Ensure the container is running and ports are properly mapped.2.βResource Limits
Solution: Increase MAX_CONCURRENT_TASKS or container resources.3.βGPU Access
Solution: Ensure proper NVIDIA drivers and use--gpus all
flag.
Debug Mode
Access container for debugging:
View container logs:
Best Practices π
1.βResource Management - Set appropriate memory and CPU limits - Monitor resource usage via health endpoint - Use basic version for simple crawling tasks
2.βScaling - Use multiple containers for high load - Implement proper load balancing - Monitor performance metrics
3.βSecurity - Use environment variables for sensitive data - Implement proper network isolation - Regular security updates
API Reference π
Health Check
Submit Crawl Task
POST /crawl
Content-Type: application/json
{
"urls": "string or array",
"extraction_config": {
"type": "basic|llm|cosine|json_css",
"params": {}
},
"priority": 1-10,
"ttl": 3600
}
Get Task Status
For more details, visit the official documentation.